M2. (a) X contains > C=O (1)if X and Y reversed lose this mark but allow remaining max 6/7 . X is CH₃CH₂COOH (1) · Y is CH₃CH₂CH₂OH (1) CH₃CH₂CH₂CH₂CH₂CH₃(1) ∴ A is Propanol \swarrow X reagent: acidified $K_2 Cr_2 O_7$ (1) Y reagent: NaBH₄ (1) Conc H₂SO₄ : catalyst (1) (b) $\begin{array}{c} H \\ CH_{3}CH_{2}CH_{2} - \overset{H}{C} - COOH \\ I \\ CH_{3} \\ H_{3} \\ \end{array} \begin{array}{c} H \\ B \end{array} \qquad CH_{3} - CH_{2} - \overset{H}{C} - CH_{2}COOH \\ I \\ CH_{3} \\ CH_{3}$ $\begin{array}{cccccccc} H & H \\ I & I \\ CH_3 - C - C - C - COOH \end{array} (1) \\ CH_3 - C - C - CH_2 - COOH \\ I \\ CH_4 - C - CH_2 - COOH \\ CH_4 - CH_4 - CH_4 \\ C$ D in any order (c) $- OC^{a}H_{2} - 3.1 - 3.9$ (1)

7

4

3269 cm⁻¹ ·· OH / alcohol (1)

2

6

Notes

(d)

(a) first mark for C=O stated or shown in **X** *Ignore wrong names*

> Y <u>CH₃CH₂CH₂OH</u> allow C₃H₇ in A if Y correct or vice versa Allow (1) for A if correct conseq to wrong X and Y

other oxidising agents: acidified KMnO4; Tollens; Fehlings

other reducing agents: LiAlH₄; Na/ethanol; Ni/H₂; Zn or Sn or Fe/HCl

- (b) give (1) for carboxylic acid stated or COOH shown in <u>each</u> suggestion (1) for correct E any 2 out of 3 for B, C or D allow C₃H₇ for either the B or D shown on the mark scheme i.e. a correct structure labelled B, C or D or E will gain 2.
- (c) protons a *quartet* must be correct to score 3 *adjacent H* mark. Same for b
- (d) allow (1) for any OH (alcohol) shown correctly in any structure ignore extra functional groups. Structure must be completely correct to gain second mark

[19]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space

(2) Structures

Penalise once per paper

 $\underline{allow}_{or} \stackrel{CH_{3}}{\leftarrow} or \stackrel{-CH_{3}}{-} or \stackrel{CH_{3}}{\mid} or \stackrel{CH_{3}}{\mid} or CH_{3}$

M3.D

M4. (a)
$$CH_3COCI + AICI_3 \rightarrow CH_3^{+C}O + AICI^{+4}$$

(1) equation (1)

penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] 2

[1]

(c) dehydration or elimination

(conc) H₂SO₄ or (conc) H₃PO₄ allow dilute and Al₂O₃ Do not allow iron oxides

1

[14]

M5.	X is CH ₃ CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile				-		
	<i>Not</i> ethanitrile but contradiciton of name and structure lose marks						1
	\mathbf{Y} is $CH_3CH_2NH_2$ or ethylamine or aminoethane or ethanamine						1
	Step 1: reagent KCN not HCN/HCI condition (aq)/alcohol - only allow condition if reagent correct or incomplete						2
	Step 2: reagent condition	H₂ Ni/Pt/Pd	LiAlH₄ ether	Na ethanol	Zn/Fe/Sn HCl	Not NaBH₄	2

Z is an amine or aminoalkane or named amine even if incorrect name for **Z** secondary (only award if amine correct)

$$\begin{bmatrix} CH_{3} \\ I \\ CH_{3}CH_{2} - N - CH_{3} \\ I \\ CH_{3} \end{bmatrix}^{+}$$
 (Br) + can be on N or outside brackets as shown

nucleophilic substitution

[9]

1

1

M6. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	K₂Cr₂Oァ/H⁺	KMnO₄/H⁺	l₂/NaOH
			or acidified		
Propanal	silver (mirror)	red ppt or goes red (not red solution)	goes green	goes colourless	No reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

	(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^2$ -/H ⁺ then mark on)				
	(ii)	propanal 3 peaks ignore splitting even if wro	ng	1	
		propanone 1 peak		1	
(b)	X is	CH₃CH₂COOH or propanoic acid	if both name and formula given, both must be correct, but	1	
	Y is	CH₃CH(OH)CH₃ or propan-2-ol	allow propanol with correct formula	1	
Mar The r	k the eage	type of reaction and reagent/content the two structures of the correct or close to struct the two structures of two structures of the two structures of	ondition independently. score condition		
Step	1	Oxidation			

 $K_2Cr_2O_7/H^+$ or other oxidation methods as above allow $Cr_2O_7^{2-}H^+$ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

1

Step 2	reduction or nucleophilic addition	reduction or nucleophilic addition	reduction or hydrogenation	1
	NaBH₄	LiAlH₄	H ₂	1
	in (m)ethanol or water or ether	ether or dry	Ni / Pt etc	1

Step 3	esterification or (nucleophilic) addition-elimination or condensation	1	
	(conc) H₂SO₄ or HCl	1	
	warm (allow without acid reagent if ${f X}$ and ${f Y}$ given as reagents)	1	
	or reflux or heat	1	
		-	[15]